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Abstract

In this manuscript a method to compute eigenfrequencies for elastic beams is presented. For beam modeling,
three fundamental effects are considered: bending, rotary inertia and shear deformation. The method consists
on enclosing each eigenfrequency in an interval where the characteristic function is monotonic. Then, a root
finding technique is used to compute the eigenfrequency to any desired accuracy. The method is applied
successfully to equations involving bending and either rotary inertia or shear deformation.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Flexural motion of elastic beams is a problem of interest in structural engineering. In particular,
engineers need to calculate the natural frequencies, or eigenfrequencies of beam elements. The
reason is that another part of the system may force it to vibrate at a frequency near one of its
natural frequencies. If so, resonance brings about a large amplification of the forcing amplitude
with potentially disastrous consequences.
The most realistic and accurate approach for computing eigenfrequencies is to model the elastic

beam based on the fundamentals of elasticity theory, then compute eigenfrequencies by means of
see front matter r 2004 Elsevier Ltd. All rights reserved.
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the finite element method (FEM). The model is three dimensional and consequently, the
computational cost is high.
In applications, one-dimensional models are preferred. Three fundamental effects are

considered; bending, rotary inertia and shear deformation. All effects are considered in the
Timoshenko equation (TE)
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Here Y ðx; tÞ represents the vertical displacement of the elastic axis of the beam. The physical
constants in the model are: r; density; A; cross-sectional area; E; Young’s modulus; G; shear
modulus; I ; second moment of area and K ; shear coefficient. A physical derivation of this
equation is presented in Ref. [1]. The modeling aspects are also presented in Refs. [2,3].
In this equation �rIq4Y=qt2qx2 is the contribution of rotary inertia and the term due to shear

deformation is rI=KGðrq4Y=qt4 � E q4Y=qt2qx2Þ: If both effects are neglected the well known
Euler–Bernoulli (E–B) equation is obtained:
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For the E–B equation, Chen and Coleman [4] apply the wave propagation method (WPM) to
estimate high-order eigenfrequencies. By means of a formal perturbation approach the estimates
are improved to include all low order eigenfrequencies. An alternative is presented here. It will be
shown that each eigenfrequency is contained in an interval where the characteristic function
associated with the time-reduced form of the equation is monotonic. Consequently, eigen-
frequencies can be found by a simple iterative method to any desired accuracy. An advantage of
this approach is that it generalizes to more general beam equations. In particular, to quasi-TEs,
that is, equations which involve bending and either rotary inertia or shear deformation. These
equations are, respectively,
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Eq. (1) is also known as the Rayleigh equation. Eq. (2) shall be referred as the B+S equation.
Computing eigenfrequencies involves the solution of an eigenvalue problem for a differential

operator. To make the problem well posed, boundary conditions need to be prescribed. Following
Chen and Coleman [4] the following configurations are considered: clamped–clamped (C–C),
clamped–simply supported (C–S), clamped–roller supported (C–R) and clamped–free (C–F). It
will become apparent that the method applies to any other configuration. For cross-validation,
eigenfrequencies are computed with FEM and with the method to be introduced.
An extensive comparative study of elastic beams, and computation of eigenfrequencies, is

carried out in Ref. [5]. There, all numerical tables are presented for the different beam models and
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configurations below. The benchmark for comparison are the eigenfrequencies of 3-D specimens
for a collection of materials and geometries computed with 3-D FEM.
The outline of this work is as follows.
The eigenvalue problem for the TE is the content of Section 2. There, the mathematical

formulation of the problem is presented, and the quasi-TEs with corresponding eigenvalue
problems are introduced. Equations are in dimensionless form for computation.
In Section 3, the method to compute eigenfrequencies based on a root-finding technique (RFT)

is introduced. It is developed in the context of the E–B equation in the C–C configuration. For
comparison, a simplified version of WPM is presented.
In Section 4, the same analysis is shown for the quasi-TEs. Frequencies are normalized, thus

frequencies for an actual beam can be easily derived.
Extension of this work, as well as some problems for future research are part of the content of

Section 5.
2. The eigenvalue problems

Recall the TE,
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Under harmonic motion

Y ðx; tÞ ¼ yðxÞe�iot:

It follows that

�rAo2y þ rIo2 d
2y

dx2
þ EI

d4y

dx4
þ

rI

KG
o2 ro2y þ E

d2y
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� �
¼ 0: (3)

In dimensionless form x ¼ x=L; Z ¼ y=L; f2
¼ ðrAo2L4Þ=EI ; a ¼ EI=ðKGAL2Þ and b ¼

I=ðAL2Þ: Eq. (3) then becomes

d4Z

dx4
þ f2

ðaþ bÞ
d2Z

dx2
� f2

ð1� f2abÞZ ¼ 0: (4)

The following boundary conditions are of interest: (A) displacement zero, Z ¼ 0; (B) total slope
zero, dZ=dx ¼ 0; (C) moment zero, d2Z=dx2 þ f2aZ ¼ 0 and (D) shear zero, d3Z=dx3 þ f2

ðaþ
bÞdZ=dx ¼ 0:
To make the eigenvalue problem well posed, two boundary conditions need to be prescribed at

both ends. In reference to this, consider the following conditions for any end of the beam: clamped
(C): A; B; simply supported (S): A; C; roller supported (R): B; D and free (F): C; D:
The eigenvalue problem consists of finding f; such that there is a non-trivial solution Z of Eq.

(4) subject to appropriate boundary conditions. As mentioned above, the configurations to be
considered are: C–C, C–S, C–R, C–F.
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Remark. (1) If a ¼ 0 (b ¼ 0) the eigenvalue problems for the Rayleigh (B+S) equation are
obtained.
(2) A boundary condition also of interest, but not considered here, is slope due to bending only

zero, ad3Z=dx3 þ ð1þ f2a2ÞdZ=dx ¼ 0:
(3) With the appropriate boundary conditions, the eigenvalue problem for any of the quasi-TEs

has eigenvalues 0of1of2o � � �ofn; with fn % 1:
3. Computation of eigenfrequencies

Eigenfrequencies are the roots of transcendental equations. Roughly speaking, WPM
approximates these transcendental equations, by equations that are solved in explicit form. In
this section, a review of the method for the E–B equation in the C–C configuration is presented.
For the same model, an RFT to compute eigenfrequencies is introduced.

3.1. The WPM

To illustrate the WPM consider the E–B equation

d4Z

dx4
� f2Z ¼ 0

subject to C–C conditions

Zð0Þ ¼ Z0ð0Þ ¼ Zð1Þ ¼ Z0ð1Þ ¼ 0: (5)

For simplicity write

Zð4ÞðxÞ � k4ZðxÞ ¼ 0; 0oxo1; (6)

where k2
¼ f; k40:

The eigenvalue problem, therefore, consists of finding all values of k for which there is a non-
trivial function Z; solution of Eq. (6), subject to the boundary conditions given in Eq. (5).
It is well known that the eigenvalue problem does not have any closed-form solutions.

A straightforward approach to determine k is as follows. For k40 the general solution of
Eq. (6) is

ZðxÞ ¼ Aeikx þ Be�ikx þ Ce�kx þ Dekðx�1Þ: (7)

Substituting this equation into the C–C boundary conditions in Eq. (5), one obtains
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In order to have a non-trivial solution, k satisfies the transcendental equation determined by the
zero determinant condition

1 1 1 e�k

ik �ik �k ke�k

eik e�ik e�k 1

ikeik �ike�ik �ke�k k

									

									
¼ 0 (8)

or, after simplification

�2k2 cos k þ 4k2e�k � 2k2 cos ke�2k ¼ 0:

Hence, the roots of the equation

� cos k þ 2e�k � cos ke�2k ¼ 0 (9)

are needed.
An expression of k from Eq. (9) is not possible; an asymptotic approach to estimate the solution

by means of the WPM is shown below.
Observe that in Eq. (7) for k large, the third term e�kx is negligible for x ¼ 1; whereas the same

is true for the fourth term e�kðx�1Þ if x ¼ 0: Hence the function ZðxÞ behaves like Aeikx þ Be�ikx þ
Ce�kx for x near zero; and like Aeikx þ Be�ikx þ Dekðx�1Þ for x near one. This suggests to consider
as zero the terms involving e�k in the determinant equation (8). Thus, the determinant equation is

1 1 1 0

ik �ik �k 0

eik e�ik 0 1

ikeik �ike�ik 0 k

									

									
¼ 0:

After some simplification, we are led to solve for k the equation

cos k ¼ 0:

Consequently, the eigenvalue problem

Zð4ÞðxÞ � k4ZðxÞ ¼ 0; 0oxo1;

Zð0Þ ¼ Z0ð0Þ ¼ Zð1Þ ¼ Z0ð1Þ ¼ 0

has a non-trivial solution Z when

f2
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; n ¼ 1; 2; . . .

or
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p
2
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; n ¼ 1; 2; . . . :

It can be seen from Table 1, that the frequencies in this expression are good estimates except for
a few of the smallest eigenvalues.
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Table 1

Eigenfrequencies for the C–C beam, as estimated by the 1-D FEM and the WPM

Freq. 1-D FEM WPM

1 22.37329 22.20660

2 61.67282 61.68503

3 120.90339 120.90265

4 199.85946 199.85949

5 298.55557 298.55553

6 416.99089 416.99079

7 555.16548 555.16525

8 713.07941 713.07892

9 890.73277 890.73180

10 1088.12565 1088.12389

M.A. Moreles et al. / Journal of Sound and Vibration 284 (2005) 1119–11291124
Remark. The same conclusion holds for other boundary conditions. That is, the WPM fails only
for a few low-order eigenfrequencies.
3.2. Eigenfrequencies for the E–B elastic beam by bracketing

In this paragraph, the approximation of the eigenvalues is improved by applying a simple
iterative method. The technique is illustrated with the E–B equation in the C–C case.
Consider the real variable analog of Eq. (7), namely

ZðxÞ ¼ A cos kxþ B sin kxþ Ce�kx þ Dekðx�1Þ

and substitute the C–C boundary conditions to obtain
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Let

f dðkÞ ¼ det
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thus

f dðkÞ ¼ k2 det

1 0 1 e�k

0 1 �1 e�k

cos k sin k e�k 1

� sin k cos k �e�k 1

2
6664

3
7775

or

f dðkÞ ¼ �2k2
½ð1þ e�2kÞ cos k � 2e�k�: (10)

From Eq. (10) it suffices to find zeros of the function

f ðkÞ ¼ ð1þ e�2kÞ cos k � 2e�k: (11)

It is readily seen that in the intervals

nppkpðn þ 1Þp; n ¼ 1; 2; . . . ; (12)

f ðkÞ is strictly monotone and f ðnpÞf ððn þ 1ÞpÞo0; hence, there is only one root, kn; of f ðkÞ in such
intervals.
Recall that f ¼ k2; hence f is monotone on k. Thus, interval (12) provides asymptotic estimates

for the eigenfrequencies

n2p2pfnpðn þ 1Þ2p2; n ¼ 1; 2; . . . :

The roots of function (11) can be found by bisection to any desired accuracy. The method is
denoted by RFT. See the results in Table 2 for the natural frequencies.

Remark. (1) By considering the full determinant function, the RFT is more accurate than the 1-D
FEM. Starting with the fourth eigenfrequency, there is a slight difference in the estimates. This is
Table 2

Eigenfrequencies for the C–C beam, as estimated by the 1-D FEM and the RFT

Freq. 1-D FEM RFT

1 22.37329 22.37329

2 61.67282 61.67282

3 120.90339 120.90339

4 199.85946 199.85945

5 298.55557 298.55554

6 416.99089 416.99079

7 555.16548 555.16525

8 713.07941 713.07892

9 890.73277 890.73180

10 1088.12565 1088.12389
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due to the accumulation of error when solving the generalized eigenvalue problem arising from
FEM.
(2) For faster convergence, the Newton method can be used to approximate the roots of

function (11).
4. Quasi-TEs

The quasi-TEs are

d4Z

dx4
þ f2b

d2Z

dx2
� f2Z ¼ 0;

d4Z

dx4
þ f2a

d2Z

dx2
� f2Z ¼ 0:

Both models have the form

d4Z

dx4
þ gf2 d

2Z

dx2
� f2Z ¼ 0: (13)

Unlike the E–B equation, some work needs to be carried out to estimate intervals enclosing
eigenfrequencies for Eq. (13). It is required to study the mode of vibration associated with this
equation.
Consider the characteristic polynomial associated with Eq. (13), namely

PðrÞ ¼ r4 þ gf2r2 � f2:

It has four roots:

r1 ¼ �r2 ¼ �il; r3 ¼ �r4 ¼ �m;

where

l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
gf2

þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2f4

þ 4f2
Þ

qr
; m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
1

2
gf2

þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2f4

þ 4f2
Þ

qr
: (14,15)

Thus, the mode of vibration ZðxÞ is given by

ZðxÞ ¼ A cos lxþ B sin lxþ Ce�mx þ Demðx�1Þ:

Intervals for the eigenfrequencies will be given in terms of l: Let us deduce some properties of l
and m as functions of f:
It can be seen that

l2 � m2 ¼ gf2; ml ¼ f: (16)

From Eq: ð14Þ it is readily seen that l0ðfÞ40; hence l is strictly increasing and unbounded. It
can be inverted to obtain

f2
¼

l4

1þ gl2
: (17)



ARTICLE IN PRESS

M.A. Moreles et al. / Journal of Sound and Vibration 284 (2005) 1119–1129 1127
For m we can write

m2 ¼
2

gþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4=f

p :

It follows that m is also strictly increasing with respect to f: Moreover,

m !
1ffiffiffi
g

p ; when f % 1: (18)

Because of Eq. (18), the term e�m does not tend to zero with f; unlike the corresponding term
for the E–B beam. Nevertheless, for actual beams, g is small, thus e�m is small and decreases to
e�1=

ffiffi
g

p

: Thanks to these properties, we will be able to consider e�m negligible.
Observe that for each frequency fn there is a unique ln40 obtained from Eq. (17).

Consequently, when finding an interval for ln; a corresponding interval for fn follows.
Next, intervals for enclosing ln for Rayleigh equation in all configurations are provided. As

before, f d denotes the full determinant function of the beam in consideration, and f the function
for root finding. We list f d ; f ; and the intervals enclosing the eigenfrequencies. When necessary,
following properties of l and m; additional details are provided.

4.1. The Rayleigh equation

The characteristic functions for the Rayleigh equation in all configurations involve the
terms cos l; sin l and e�m: In essence, intervals enclosing the eigenfrequencies are
determined by comparing the sign of cos l and sin l: As remarked before, the term e�m is
negligible.

4.1.1. The C–C case

f d ¼ f½�bfð1� e�2mÞ sin l� 2ð1þ e�2mÞ cos lþ 4e�m�;

f ðlÞ ¼ fbð1� e�2mÞ sin lþ 2ð1þ e�2mÞ cos l� 4e�m;

1

2
þ n

� �
polnoð1þ nÞp; n ¼ 1; 2; 3; . . . :
4.1.2. The C–S case

f dðlÞ ¼ ðm2 þ l2Þ½ð1þ e�2mÞm sin l� ð1� e�2mÞl cos l�;

f ðlÞ ¼ ð1þ e�2mÞm sin l� ð1� e�2mÞl cos l;

npolno
1

2
þ n

� �
p; n ¼ 1; 2; 3; . . . :
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4.1.3. The C–R case

f dðlÞ ¼ lmðm2 þ l2Þðm cos lð1� e�2mÞ þ l sin lð1þ e�2mÞÞ;

f ðlÞ ¼ ðm cos lð1� e�2mÞ þ l sin lð1þ e�2mÞÞ;

1

2
þ n

� �
polnoð1þ nÞp; n ¼ 0; 1; 2; . . . :

4.1.4. The C–F case

f dðlÞ ¼ ml½ðm4 þ l4Þð1þ e�2mÞ cos l� lmðl2 � m2Þð1� e�2mÞ sin lþ 4l2m2e�m�;

but from Eq. (16),

f dðlÞ ¼ mlf2
½ð2þ bf2

Þð1þ e�2mÞ cos l� fbð1� e�2mÞ sin lþ 4e�m�;

f ðlÞ ¼ ð2þ bf2
Þð1þ e�2mÞ cos l� fbð1� e�2mÞ sin lþ 4e�m;

p
2
ol1op;

npolnþ1o
1

2
þ n

� �
p; n ¼ 1; 2; 3; . . . :

4.2. The E–B and B+S equations

Intervals containing the eigenfrequencies for the E–B equation are found by letting b ¼ 0 in the
expressions above. In this case m ¼ l ¼ k:
Notice that for the C–C and C–R configurations, the eigenvalue problems for the Rayleigh and

B+S equations are identical. To find the intervals for the B+S equation in these cases, just
substitute a instead of b in the corresponding expressions.
In practice there are other configurations of interest. Hopefully, the reader may

adapt the method presented here to the configuration and beam equation of his (her) own
choosing.
5. Concluding comments

We have introduced a method to compute eigenfrequencies in Section 4 and applied it
successfully to the quasi-Timoshenko equations in Section 5. The method is simple, highly
accurate and allows one to compute frequencies of any order at virtually no cost.
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One of the problems currently under study is the eigenvalue problem for the Timoshenko
equation,

d4Z

dx4
þ f2

ðaþ bÞ
d2Z

dx2
� f2

ð1� f2abÞZ ¼ 0:

The extension of the method is by no means straightforward.
On the other hand, by denoting l ¼ f2 we obtain a quadratic eigenvalue problem:

d4Z

dx4
þ lðaþ bÞ

d2Z

dx2
� lð1� labÞZ ¼ 0:

By using the FEM it can be reduced to a linear generalized eigenvalue problem. The matrices in
this problem are unstructured, and due to the change of variable, spurious eigenvalues are found.
An algorithm to solve this eigenvalue problem is of interest.
A related problem is to establish asymptotic estimates for eigenfrequencies of elastic beams, see

Ref. [6]. In our case, rough estimates are provided by the intervals enclosing the roots. For the
E–B beam, sharp estimates are easily obtained. We leave for future work the case of quasi-
Timoshenko equations.
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